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One-dimensional mixed MHD convection
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Abstract

The parallel, fully developed flow of an electrically conducting fluid between plane parallel walls under the simultaneous influence of a
driving pressure head, buoyancy, and magnetohydrodynamic (MHD) forces is studied. The fluid is assumed to be internally heated and
the flow is modeled as one-dimensional and incompressible, while the Boussinesq approximation is adopted for the buoyancy terms.
Analytical solutions are obtained for temperature, velocity and electrical potential under different electrical boundary conditions, forced
to natural convection intensity ratios and values of the magnetic induction. Generalized working charts are presented which synthetically
describe the system’s operation as an EM pump, a MHD generator, a thermal engine or a pure dissipator.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetohydrodynamics (MHD) deals with the motion
of electrically conducting fluids under the influence of a
magnetic field. The birthdate of MHD may be identified
with the first experiments by Faraday who attempted to
measure the electric potential induced between the opposite
banks of the Thames river by the motion of the (weakly)
conducting water in the Earth’s magnetic field [8]. The prin-
ciple behind Faraday’s (unsuccessful) experiment is the
same which underlies modern MHD flow meters. About
in the same period, Ritchie developed a rudimentary elec-
tromagnetic pumping device, although the first working
MHD pump was presented only much later [13].

Currently, MHD effects are widely exploited in different
industrial processes ranging from metallurgy to the produc-
tion of pure crystals [12]. A field in which MHD will play an
essential role is nuclear fusion, where it is involved in at least
two different problems: the confinement and dynamics of
plasma, and the behaviour of the liquid metal alloys
employed in some of the currently considered designs of
tritium breeding blankets.
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Consider the duct in Fig. 1, in which a conducting fluid
flows upward with velocity w in the presence of a horizontal
magnetic induction field B. The Lorentz force F = Qw · B

acting on electric charges Q convected by the fluid gives rise
to an induced current density ji = rw · B, r being the fluid’s
electric conductivity. At the same time, charge separation
creates through the duct a distribution of electric potential
u; this results in a diffusive electric current of density
jd = � r$u, opposite to ji. The overall current density
j = r(w · B � $u) is shown in Fig. 1 as possessing the same
direction of ji, but this is not necessarily true. The interac-
tion between the current density j and the magnetic induc-
tion field B causes in its turn a magnetohydrodynamic
force of volume density f = j · B; this may locally oppose
or aid the fluid’s motion according to whether the induced
or the diffusive current (i.e., ji or jd) prevails.

Fig. 2(a) reports a cross-section of the duct. The fluid’s
velocity w is orthogonal to the section and directed
upward, and the arrows indicate, in a schematic way, the
direction of the total current density in the different regions
of the section. The walls lying orthogonal to B are called
Hartmann walls, while those lying parallel to B are called
side walls. A typical velocity profile along the line a � a

parallel to B is reported in Fig. 2(b). In the central region
of the duct, where the maximum speed is attained, the
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Fig. 1. Lorentz forces and electric currents as an electrically conducting
fluid flows upward in a straight duct with velocity w in the presence of a
horizontal magnetic induction field B.

Nomenclature

B, B magnetic induction (T)
D distance between parallel walls (m)
F, F Lorentz force (N)
f, f Lorentz force per unit volume (N m�3)
g, g acceleration due to gravity (m s�2)
Gr Grashof number
j, j electric current density (A m�2)
J dimensionless electric current density
L dimensionless extrapolation distance
M Hartmann number
Np pressure head number
p pressure (N m�2)
P dimensionless power
Q electric charge (C)
q volumetric power density (W m�3)
t temperature (K)
T dimensionless temperature
V electric potential difference (V)
w, w velocity (m s�1)
W dimensionless velocity
x, y, z Cartesian co-ordinates (m)
X dimensionless length

Greek symbols

b thermal expansion coefficient (K�1)
k thermal conductivity (W m�1 K�1)
l viscosity (N s m�2)
m kinematic viscosity (m2 s�1)
q density (kg m�3)
r electric conductivity (X�1 m�1)
u electric potential (V)
U dimensionless electric potential

Subscripts and averages

CL centerline
d diffusive
E electrical
i induced
M mechanical
x, y, z Cartesian components
�W average value of generic quantity W
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electromagnetic forces oppose the fluid’s motion; this
magnetic braking causes a flattened velocity profile. Near
the Hartmann walls, since the fluid’s speed necessarily van-
ishes because of the no slip conditions, the diffusive current
prevails and the resulting electromagnetic forces aid the
fluid’s motion, giving rise to a steep velocity profile in thin
boundary layers (Hartmann layers). Similar, but thicker,
boundary layers are formed on the side walls.

Current lines are represented in Fig. 3 for different elec-
tric conductivities of the solid walls. The intensity of the
total currents in the fluid (hence, of the total MHD forces)
depends on the overall resistance encountered by the
current loops, which in turn includes the tiny bulk flow
resistance and the return resistance associated to the Hart-
mann layers and to the solid walls, the last two arranged in
parallel. In the case of highly conducting walls, current
loops close themselves entirely in the walls, the return resis-
tance becomes negligible and the only loop electric resis-
tance is the bulk resistance of the liquid metal; as a
consequence, MHD forces oppose the fluid’s motion every-
where, overall currents and braking MHD forces are high-
est, and the largest MHD damping of the flow is obtained.
In the opposite case of electrically insulating walls, current
loops close themselves only through the thin Hartmann lay-
ers; the loop electric resistance is highest, while currents are
small and so are MHD braking effects. An intermediate
behaviour is obtained for finite conductivity walls.

The above remarks make it clear, although on a purely
qualitative basis, that many MHD effects on the flow of an
electrically conducting fluid depend on the way current
loops establish themselves in the domain of interest; as
such, they require at least two spatial dimensions in addi-
tion to the direction of the fluid’s velocity w. In fact, a large
number of published computational studies on MHD flows
have been conducted in two dimensions and have assumed
conditions of fully developed flow or channels of infinite
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Fig. 2. Current and flow distribution in a cross-section of a straight duct. Top: current densities; bottom: velocity profile along a line a–a parallel to B.
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length to dispose of the third dimension, see for example
Bühler [1], Di Piazza and Bühler [4], Ciofalo and Cricchio
[2]. A few papers have dealt with fully three-dimensional
MHD problems, see for example Tagawa and Ozoe [17],
Di Piazza and Ciofalo [6,7], Ciofalo and Cricchio [3].

However, two- or three-dimensional MHD problems are
rarely amenable to exact (analytical) solutions, and a com-
bination of asymptotic analysis and of numerical methods
usually have to be employed, which often obscures the
meaning of the results as closed form expressions for vari-
ous quantities of physical relevance cannot be written.

On the other hand, exact solutions are possible if one
restricts the attention to one-dimensional MHD problems
such as that schematically shown in Fig. 4. Here, an electri-
cally conducting fluid flows along z in a vertical channel
delimited by infinite plane parallel walls orthogonal to x
and placed at a distance D, under the influence of an exter-
nally imposed driving pressure gradient and of the MHD
forces caused by the interaction of the flow with a uniform
magnetic induction field B, directed along y. Buoyancy
forces, caused by internal power generation of volume den-
sity q and/or by differential heating of the two walls, can
easily be included thus giving rise to mixed MHD convec-
tion, a condition which has been very little studied in the
literature so far [11,15,16]. No slip conditions can be
assumed at the walls, although more general conditions,
such as those of differentially sliding walls, could easily
be taken into account.

2. Governing equations

For steady-state conditions, one-directional, parallel,
fully developed MHD flow, the problem in Fig. 4 is gov-
erned by the set of one-dimensional equations discussed
here below.

First, by assuming constant physical properties and
using the Boussinesq approximation for buoyancy, the ver-
tical momentum (MHD Navier–Stokes) equation can be
written:

� dp
dz
þ l

d2w
dx2
þ gbqðt ��tÞ � jxB ¼ 0 ð1Þ

in which jx is the only nonzero component of the current
density vector j. As discussed in Section 1, it can be
expressed as the algebraic sum of an induced and a diffusive

contribution:

jx ¼ �rwB� r
du ð2Þ



Fig. 3. Schematic representation of current lines for different conductivities of the walls.
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By substituting Eq. (2) for jx into Eq. (1), one has the
following modified Helmholtz equation for the vertical
velocity w:

l
d2w
dx2
� rB2w ¼ dp

dz
� gbqðt ��tÞ þ rB

du
dx

ð3Þ

Second, the Poisson equation for the electrical potential re-
duces to:

d2u
dx2
¼ �B

dw
dx

ð4Þ

Finally, the heat transport equation reduces to the conduc-
tion equation:

d2t
dx2
¼ � q

k
ð5Þ

in which k is the thermal conductivity of the fluid. Eqs. (3)–
(5) are coupled in such a way that only the heat Eq. (5) can
be independently solved for the temperature t, whereas the
electric potential u depends on the w velocity and this latter
depends both on u and on the temperature t.

The above equations can be made dimensionless by
using for the various physical quantities the scales summa-
rized in Table 1.
Note that the viscous scale m/D was used here for the
velocity w, but several alternatives would be possible,
including magnetohydrodynamic, buoyant, and diffusive
scales. The present choice offers the advantage that the
scale m/D can never vanish for real fluids.

By using the above scales and defining the following
dimensionless groups:

Pressure head number N p ¼ �
dp
dz

qD3

l2
ð6Þ

Grashof number Gr ¼ gbqD5

km2
ð7Þ

Hartmann number M ¼ BD
ffiffiffi
r
l

r
ð8Þ

Eqs. (3)–(5) can be re-written as:

d2W

dX 2
�M2W ¼ �Gr

8
ðT � �T Þ þM2 dU

dX
� N p ð9Þ

d2U

dX 2
¼ � dW

dX
ð10Þ

d2T

dX 2
¼ �8 ð11Þ
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Fig. 4. Geometry studied in the present work (channel delimited by
infinite plane parallel walls).

Table 1
Normalization scales

Physical quantity Dimensioned
variable

Scale used Dimensionless
variable

Length x (m) D X ¼ x
D

Velocity w (m s�1)
m
D

W ¼ wD
m

Temperature t (K)
qD2

8k
T ¼ ðt � twÞ

8k

qD2

Electric potential u (V) mB U ¼ u
mB

Electric current density j (A m�2)
mBr
D

J ¼ jD
mBr
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while the electric current density in Eq. (2) is replaced by its
dimensionless counterpart:

J x ¼ � W þ dU
dX

� �
ð12Þ
3. Solutions for equi-potential walls

Among all possible boundary conditions, consider first
those of no slip on still walls for the vertical velocity;
isothermal walls at t = tw for the temperature; and equi-
potential (infinitely electrically conducting) walls at u = 0
for the electric potential. In dimensionless terms, these
are expressed by:

W � 1

2

� �
¼ 0 ð13Þ

U � 1

2

� �
¼ 0 ð14Þ

T � 1

2

� �
¼ 0 ð15Þ

The heat Eq. (11) with BCs (15) immediately yields the
parabolic temperature distribution:

T ðX Þ ¼ 1� 4X 2 ð16Þ
whose mean value is:

T ¼ 2

3
ð17Þ

The electric potential Eq. (10) can be formally integrated
once to give:

dU
dX
¼ �W þ C1 ð18Þ

in which C1 is an integration constant to be determined
later by imposing the boundary conditions on U. Taking
Eqs. (16)–(18) into account, the momentum Eq. (9)
becomes:

d2W

dX 2
¼ �Gr

8

1

3
� 4X 2

� �
þM2C1 � N p ð19Þ

By integrating this twice with respect to X, and imposing
the boundary conditions (13), one has:

W ðX Þ ¼ Gr
384
þ Np

8
� C1M2

8

þ 1

2
�Gr

24
þ C1M2 � N p

� �
X 2 þ Gr

24
X 4 ð20Þ

This last expression, which still depends upon the integra-
tion constant C1, can be substituted for W in Eq. (18),
which, once integrated again, gives:

UðX Þ ¼ C1 1þM2

8

� �
� Gr

384
� N p

8

� �
X

� 1

6
C1M2 � Np �

Gr
24

� �
X 3 � Gr

120
X 5 þ C4 ð21Þ

Finally, by imposing the boundary conditions (14) one
obtains the two constants C1 and C4 which, once substi-
tuted in Eqs. (20) and (21), yield the explicit profiles of
W and U as functions of X:

W ðX Þ¼ 1

8

Gr
48
þN p�

M2

M2þ12

60NpþGr
60

� �

þ1

2

M2

M2þ12

60NpþGr
60

�Gr
24
�N p

� �
X 2þGr

24
X 4

ð22Þ
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UðX Þ¼ 1

96

60NpþGr
5

M2þ8

M2þ12
�48N pþGr

4

� �
X

þ 1

72
�60NpþGr

5

M2

M2þ12
þ24N pþGr

2

� �
X 3� Gr

120
X 5

ð23Þ

Profiles of W and U are reported in Figs. 5 and 6 for an
arbitrary choice of the Grashof and pressure head numbers
(Gr = 1010, Np = 109) and different values of the Hartmann
number M. The centerline velocity WCL = W(0) tends to
the following limiting values for M = 0 and M!1,
respectively:

W CLðM ¼ 0Þ ¼ Gr
384
þ Np

8
ð24aÞ

W CLðM !1Þ ¼
Gr

1920
ð24bÞ

Therefore, as the magnetic induction increases, the forced-
flow velocity component is completely suppressed, but the
velocity component associated with natural convection can
only be reduced by a factor of 5 at most. This is also illus-
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Fig. 6. Dimensionless potential for Gr = 1010, Np = 109 and different
values of M (equi-potential walls).
trated in Fig. 7, which reports the dimensionless centerline
velocity WCL as a function of the Hartmann number M for
Np = 1010 and different values of the Gr/Np ratio. The fig-
ure also shows that MHD effects become significant as
soon as the Hartmann number exceeds the value of �1.
Note that this behaviour is at variance with that observed
in two-dimensional channel flow, where MHD effects be-
come significant only for M greater than �100 and where
also the natural convection component of the velocity is
completely suppressed by large values of the magnetic
induction [3].

The average W velocity is:

W ¼ 1

M2 þ 12

60Np þ Gr
60

ð25Þ

while, by substituting Eq. (18) for dU/dX into Eq. (12), one
obtains for the current density Jx the constant value:

J x ¼ �
1

M2 þ 12

60N p þ Gr
60

ð26Þ

Therefore, in the present dimensionless form, one has
J x ¼ �W (constant). However, the behaviour of mean
velocity and electric current as functions of the Hartmann
number is best appreciated by considering these quantities
in dimensioned, rather than dimensionless, form. This is
shown in Fig. 8 which reports �w and jx for a particular
choice of the geometrical dimension D of the channel and
of the physical properties of the fluid (corresponding to
the eutectic 83%Pb–17%Li alloy). It can be observed that
the electric current attains its maximum values for M � 3,
which is close to the limiting value of �1 above which a sig-
nificant reduction of the mean velocity is observed. The dif-
ference with respect to two-dimensional channel flow [3], in
which current maxima are attained at M � 100, is again
clear. The difference can be explained by the fact that in
two-dimensional flows, as discussed in Section 1, the electric
currents induced by MHD effects close themselves through
the Hartmann layers and/or the solid walls, whose electric
resistance limits the current intensity and makes high values



1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04
M

w

jx

wjx,

Fig. 8. Dimensioned mean velocity and electric current as functions of
the Hartmann number M for Pb–17Li, D=0.15, Np = 1010, Gr = 1011

(Gr/Np = 10).

G. Sposito, M. Ciofalo / International Journal of Heat and Mass Transfer 49 (2006) 2939–2949 2945
of the magnetic induction (Hartmann numbers) necessary
for significant damping effects to occur. On the contrary,
in the present one-dimensional model no return resistance
is encountered by the electric current, which makes lower
values of the Hartmann number sufficient to cause signifi-
cant MHD braking effects.

Eqs. (25) and (26) show that both the average velocity
and the current density vanish for:

Np ¼ �
Gr
60

ð27Þ
If the above condition is satisfied, Eqs. (25) and (26) show
that one has �W ¼ 0, Jx = 0, i.e., both the net flow rate and
the electric current vanish, hence there are no MHD effects
on the flow no matter how large the Hartmann number M.
Eq. (22) then gives for W(X) the following profile, which is
independent of M and thus of the applied magnetic induc-
tion Bx:

W ¼ Gr
1920

ð1� 24X 2 þ 80X 4Þ ð28Þ

This coincides with the W profile obtained for internal
heating in the absence of MHD effects by Geršuni and
Žukovitskij [9] (as reported, e.g., by Kulacki and Richards
[10]), and later by Di Piazza and Ciofalo [5].

4. Solutions for an imposed potential difference between

opposite walls

The above solutions can easily be generalized to the case
in which a difference of electric potential V (made dimen-
sionless by the same scale used for u) is imposed between
the opposite walls of the channel. The boundary condition
(14) is replaced by:

U � 1

2

� �
¼ þ V

2
; U þ 1

2

� �
¼ � V

2
ð29Þ

Note that the pressure head number Np and the potential
difference V are taken to be positive if they tend to drive
the fluid towards positive z and the electric current towards
positive x.

Accordingly, the solutions obtained above for W, U and
Jx are replaced by:

W ðX Þ¼ 1

8

Gr
48
þN p�

M2

M2þ12

60N pþGr�720V
60

� �

þ1

2

M2

M2þ12

60N pþGr�720V
60

�Gr
24
�Np

� �
X 2þGr

24
X 4

ð30Þ

UðX Þ¼ 1

96

60NpþGr�720V
5

M2þ8

M2þ12
�48NpþGr

4

� �
X

þ 1

72
�60NpþGr�720V

5

M2

M2þ12
þ24NpþGr

2

� �
X 3� Gr

120
X 5

ð31Þ
J x¼�

1

M2þ12

60NpþGr�720V
60

ð32Þ

while the average velocity expressed by Eq. 24 becomes now:

W ¼ 1

M2 þ 12

60Np þ Gr þ 60M2V
60

ð33Þ
4.1. Working charts for the case of no buoyancy

Consider first the simple case in which no buoyancy
forces act on the fluid. By letting Gr = 0 in Eqs. (32) and
(33) one has:

J x ¼ �
ðNp � 12V Þ

M2 þ 12
ð34Þ

W ¼ Np þM2V

M2 þ 12
ð35Þ

By analogy with the working diagram of a hydraulic pump,
working charts for the present generalized MHD engine
can be drawn in a plane having abscissa W (directly pro-
portional to the volumetric flow rate) and ordinate Np

(pressure head number, corresponding to the prevalence
of a centrifugal pump).

By solving Eq. (35) for V and substituting in Eq. (34),
one has:

J x ¼
12W � Np

M2
ð36Þ

The mechanical power provided by the system (positive if
the average velocity is opposite to the external applied
force) can be immediately expressed as:

P M ¼ �NpW ð37Þ
The electric power provided by the system is �VJx and is
positive if the electric current is opposite to the imposed
electric potential gradient. By using Eq. (36) for Jx and
solving Eq. (35) for V one has:

P E ¼ �VJ x ¼ �
1

M4
½N 2

p � ðM2 þ 24ÞN pW þ 12ðM2 þ 12ÞW 2�

ð38Þ
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Therefore, one has PM = 0 if W ¼ 0 (Np axis) or Np = 0
(W axis), while PE = 0 if Np ¼ 12W or N p ¼ ðM2 þ 12ÞW
(two straight lines crossing the first and third quad-
rants). It is thus possible to build eight-region work-
ing charts of the kind shown in Fig. 9 for two values of
the Hartmann number M. In these charts constant-PE

and constant-PM lines are reported, and the regions of
the W � N p plane where PE > 0 and PM > 0 are high-
lighted.
Fig. 9. Working charts in the ðW ;NpÞ plane for a generalized MHD engine in
Hartmann number M. (a) Low Hartmann number (M = 2); (b) high Hartman
The comparison of the two graphs (a) and (b) in Fig. 9
shows that the amplitude of the two sectors representing
the MHD generator mode (PE > 0) increases as M (i.e.,
the imposed magnetic induction field) increases, whereas
the two sectors representing the MHD pump mode
(PM > 0) have a fixed amplitude of 90�, independent of
the value of M. In the four remaining regions the system
works as a pure dissipator since it absorbs both electric
and mechanical power (PE 6 0, PM 6 0).
the absence of buoyancy forces (Gr = 0) and for two different values of the
n number (M = 1000).



G. Sposito, M. Ciofalo / International Journal of Heat and Mass Transfer 49 (2006) 2939–2949 2947
As an alternative, similar working charts can be drawn
in the plane (V, Np) or in the plane ðV ;W Þ. Examples can
be found in Sposito and Ciofalo [14].

4.2. Working charts for the case of buoyant flow

In the presence of buoyancy forces, the average velocity
is given by the more general expression (33), while the
electric current is still expressed by Eq. (34) as in the no
Fig. 10. Working charts in the ðW ;NpÞ plane for a generalized MHD engine in
Grashof number Gr. (a) Low Grashof number (Gr = 7200); (b) high Grashof
buoyancy case. The mechanical power is still expressed
by Eq. (37), whereas, with respect to Eq. (38), the electric
power includes now a new term depending on buoyancy:

P E ¼�VJ x ¼ �
1

M4

"
Np þ

Gr
60

� �2

� ðM2 þ 24Þ Np þ
Gr
60

� �
W

þ12ðM2 þ 12ÞW 2

#
ð39Þ
the presence of buoyancy forces for M = 20 and two different values of the
number (Gr = 45 000).
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The electric power PE now vanishes for

Np ¼ 12W � Gr
60

ð40Þ

and for

Np ¼ ðM2 þ 12ÞW � Gr
60

ð41Þ

These last two equations both represent straight lines of the
ðW ;N pÞ plane which do not intersect the origin of the axes.
Therefore, the ðW ;NpÞ plane is divided into 10 regions
rather than 8, as shown in Fig. 10 for an intermediate value
of the Hartmann number (M = 20) and two different values
of the Grashof number Gr. It is possible to observe, for
small positive values of W and negative values of Np, a re-
gion in which the system provides both electric and mechan-
ical power by converting the thermal power received, and
thus operates as a (low efficiency) thermal engine.

As in the previous no-buoyancy case, working charts
can also be drawn in the (V, Np) or ðV ; W Þ planes [14].

5. More general boundary conditions

The problem can be generalized by assuming the side
walls to be of finite thickness and conductivity, and thus
imposing the following general Cauchy conditions to the
electric potential:

Uþ L
dU
dX

� �
X¼�1

2

¼ 0 ð42Þ

in which L is an extrapolation distance (made dimension-
less by the length scale D). The solutions for W, U and
Jx now become:

W ðX Þ¼ 1

8

Gr
48
þNp�

M2

M2þ12þ24L

60N pþGr
60

� �

þ1

2

M2

M2þ12þ24L

60NpþGr
60

�Gr
24
�N p

� �
X 2þGr

24
X 4

ð43Þ

UðX Þ¼ 1

96

60NpþGr
5

M2þ8

M2þ12þ24L
�48NpþGr

4

� �
X

þ 1

72
�60NpþGr

5

M2

M2þ12þ24L
þ24NpþGr

2

� �
X 3

� Gr
120

X 5

ð44Þ

Jx¼�
1

M2þ12þ24L

60N pþGr
60

ð45Þ

while the average velocity becomes

W ¼ 1

M2 þ 12þ 24L

60N p þ Gr
60

ð46Þ

For L = 0 the above solutions are reduced to those ex-
pressed by Eqs. (22)–(25), as obtained for the case of infi-
nitely conducting walls. On the contrary, for L!1
(electrically non-conducting walls), the solution becomes
independent of the Hartmann number, the total electric
current vanishes and all MHD effects are reduced to zero.
This behaviour is observed only in one-dimensional prob-
lems, whereas in a two-dimensional channel current loops
and MHD effects would exist even in the presence of insu-
lating walls.

Another generalization of the solutions given by Eqs.
(22)–(25) can be obtained by assuming the side walls to
be differentially heated and/or to possess a relative velocity
as in Couette flow. The corresponding boundary condi-
tions on W and T, Eqs. (13) and (15), would change
accordingly, but it can be easily shown that the solutions
obtained for W and Jx, and therefore the working charts
in Figs. 9 and 10, would remain unaltered.
6. Conclusions

One-dimensional analytical solutions were obtained for
the steady-state, fully developed (parallel) mixed-convec-
tion flow of an electrically conducting fluid between plane
parallel vertical walls under the simultaneous influence of
a driving pressure head, buoyancy, and MHD forces
caused by a magnetic induction field parallel to the walls.
The walls were assumed to be still, isothermal, and at the
same temperature, with a parabolic temperature distribu-
tion caused by a uniform internal power density; solutions
were explicitly derived for different electrical boundary
conditions, including equi-potential walls, an imposed elec-
tric potential drop between the walls themselves, and more
general (Cauchy) conditions. The solutions could easily be
generalized to take into account differentially heated and/
or sliding walls.

In the case of equi-potential walls, it was found that the
net electric current is proportional to the mean velocity; a
particular ratio of pressure head to buoyancy forces
(expressed in dimensionless terms by the condition Np =
�Gr/60) makes both the above quantities to vanish and
cancels all MHD effects. For arbitrary values of pressure
head and buoyancy, MHD effects cause the buoyancy com-
ponent of the flow to decrease at most by a factor of 5,
while the forced flow component decreases without limits
as the Hartmann number increases. This finite reduction
of the buoyant flow component is peculiar to the present
one-dimensional configuration and would not be observed
in two-dimensional channels having a finite extent along
the direction of the magnetic field (yielding closed current
loops).

In the more general case in which a difference of electric
potential is imposed between the opposite walls, it is possi-
ble to define the electrical and mechanical powers PE, PM

provided by the system. In a suitable state space (e.g., the
plane whose axes are the dimensionless mean velocity W
and pressure head Np), according to the signs of PE and
PM one can distinguish alternative working regimes which,
in the absence of buoyancy, include direct and reverse EM
pumps, direct and reverse MHD generators, and purely
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dissipating modes. In the presence of buoyancy, a further
regime is observed in which the system operates as a ther-
mal engine by converting thermal power into both electri-
cal and mechanical power.
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